Make the Pertinent Salient: # Task-Relevant Reconstruction for Visual Control with Distractions Kyungmin Kim, JB Lanier, and Roy Fox University of California, Irvine ## 1. Visual Control with Distraction - Visual control task: Control actions based on visual information. - > e.g., DeepMind Control suite (DMC) - Add distractions for a more challenging and realistic setup. ## 2. Model-Based RL - Cooperation between a world model and behavior learning. - Promising with great sample efficiency in visual control tasks. - Often struggles in distracting environments. | Representation learning | Examples | Drawbacks | |--------------------------|--|---------------------------------| | Reconstruction-
based | Dreamer [1], etc. | Irrelevant information included | | Reconstruction-
free | TD-MPC [2],
DreamerPro
[3], etc. | Sample inefficient | Our method, SD, fixes this with segmentation-guided reconstruction. #### 5. References - [1] Hafner et al. Mastering diverse domains through world models. arXiv preprint, 2023. - [2] Hansen et al. Td-mpc2: Scalable, robust world models for continuous control. ICLR, 2024. - [3] Deng et al. Dreamerpro: Reconstruction-free model-based reinforcement learning with prototypical representations. ICML, 2022. ## 3. Method - * Assumption: Task-relevant components in the image are easily identifiable using available prior knowledge. - Use the prior knowledge of pre-trained segmentation foundation models. - * SD: Reconstruct only task-relevant components. - **❖ SD**^{GT}: Uses **ground-truth masks** for task-relevant components when available (e.g., in simulation). - * SD^{approx.}: Uses a segmentation model fine-tuned with as few as one annotated example. (a) Dreamer target (b) SDGT target (c) SD^{approx.} target # 4. Experimental Results - ❖ SD^{GT} matches Dreamer*; also, SD^{approx.} eventually reaches SD^{GT} while Dreamer falls short. - Reconstruction-free methods take lots of samples to converge. - To make SD^{approx.} more robust to noisy targets, we devise a selective L, loss. - Identify pixels where predicted labels may be wrong but the world model decoder is correct, ignoring L, loss for such pixels to avoid providing wrong signals. $$pixel_{nullify} = pixel_{SD} \backslash pixel_{FM}$$ # Sim-to-Real Experiments on DuckieTown (Real-World) (a) Training-time observations Test-time observations (sim) Test-time observations (real) (d) Sim test-time performance | Method | Real-world Return | |-----------------|-----------------------------------| | DREAMER* | -172.2 ± 14.4 | | DREAMER | -119.7 ± 10.7 | | DREAMER (large) | 3.9 ± 23.1 | | SD_{RGB} | 106.2 ± 4.4 | | SD_{Seg} | $\textbf{116.2} \pm \textbf{5.1}$ | - (e) Real-world evaluation - SD variants outperform Dreamer, highlighting their effectiveness for sim-to-real transfer by reducing variance during training.