Make the Pertinent Salient:

Task-Relevant Reconstruction for Visual Control with Distractions

Kyungmin Kim, JB Lanier, and Roy Fox University of California, Irvine

1. Visual Control with Distraction

- Visual control task: Control actions based on visual information.
- > e.g., DeepMind Control suite (DMC)
- Add distractions for a more challenging and realistic setup.

2. Model-Based RL

- Cooperation between a world model and behavior learning.
- Promising with great sample efficiency in visual control tasks.
- Often struggles in distracting environments.

Representation learning	Examples	Drawbacks
Reconstruction- based	Dreamer [1], etc.	Irrelevant information included
Reconstruction- free	TD-MPC [2], DreamerPro [3], etc.	Sample inefficient

Our method, SD, fixes this with segmentation-guided reconstruction.

5. References

- [1] Hafner et al. Mastering diverse domains through world models. arXiv preprint, 2023.
- [2] Hansen et al. Td-mpc2: Scalable, robust world models for continuous control. ICLR, 2024.
- [3] Deng et al. Dreamerpro: Reconstruction-free model-based reinforcement learning with prototypical representations. ICML, 2022.

3. Method

- * Assumption: Task-relevant components in the image are easily identifiable using available prior knowledge.
- Use the prior knowledge of pre-trained segmentation foundation models.
- * SD: Reconstruct only task-relevant components.
- **❖ SD**^{GT}: Uses **ground-truth masks** for task-relevant components when available (e.g., in simulation).
- * SD^{approx.}: Uses a segmentation model fine-tuned with as few as one annotated example.

(a) Dreamer target (b) SDGT target

(c) SD^{approx.} target

4. Experimental Results

- ❖ SD^{GT} matches Dreamer*; also, SD^{approx.} eventually reaches SD^{GT} while Dreamer falls short.
- Reconstruction-free methods take lots of samples to converge.

- To make SD^{approx.} more robust to noisy targets, we devise a selective L, loss.
- Identify pixels where predicted labels may be wrong but the world model decoder is correct, ignoring L, loss for such pixels to avoid providing wrong signals.

$$pixel_{nullify} = pixel_{SD} \backslash pixel_{FM}$$

Sim-to-Real Experiments on DuckieTown (Real-World)

(a) Training-time observations

Test-time observations (sim)

Test-time observations (real)

(d) Sim test-time performance

Method	Real-world Return
DREAMER*	-172.2 ± 14.4
DREAMER	-119.7 ± 10.7
DREAMER (large)	3.9 ± 23.1
SD_{RGB}	106.2 ± 4.4
SD_{Seg}	$\textbf{116.2} \pm \textbf{5.1}$

- (e) Real-world evaluation
- SD variants outperform Dreamer, highlighting their effectiveness for sim-to-real transfer by reducing variance during training.