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❖ Visual control task: Control actions 
based on visual information.

➢ e.g., DeepMind Control suite (DMC)
❖ Add distractions for a more 

challenging and realistic setup.

❖ Cooperation between a world model 
and behavior learning.

❖ Promising with great sample 
efficiency in visual control tasks.

❖ Often struggles in distracting 
environments.
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❖ Assumption: Task-relevant components in the 
image are easily identifiable using available prior 
knowledge.

❖ Use the prior knowledge of pre-trained 
segmentation foundation models.

❖ SD: Reconstruct only task-relevant components.
❖ SDGT: Uses ground-truth masks for task-relevant 

components when available (e.g., in simulation).
❖ SDapprox.: Uses a segmentation model fine-tuned 

with as few as one annotated example.

(a) Dreamer target (b) SDGT target (c) SDapprox. target

❖ To make SDapprox. more robust to noisy targets, we 
devise a selective L2 loss.

❖ Identify pixels where predicted labels may be wrong but 
the world model decoder is correct, ignoring L2 loss for 
such pixels to avoid providing wrong signals.
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❖ SDGT matches Dreamer*; also, SDapprox. eventually 

reaches SDGT while Dreamer falls short.
❖ Reconstruction-free methods take lots of 

samples to converge.

Sim-to-Real Experiments on DuckieTown (Real-World)

(a) Training-time observations

(b) Test-time observations (sim)

(c) Test-time observations (real) (e) Real-world evaluation

(d) Sim test-time performance

❖ SD variants outperform Dreamer, highlighting their effectiveness 
for sim-to-real transfer by reducing variance during training.

❖ Our method, SD, fixes this with 
segmentation-guided reconstruction.


