Pertinent Salient: ... UCH cicra

o / California, Irvine
un:l Relevant Reconstruction for Visual Control with Distractions

1IN Kim, JB Lanier, and Roy Fox
of Cal ifornia, Irvine

1. Visual Control with Distraction 3. Method % To make SD2PP"°*- more robust to noisy targets, we
< Visual control task: Control actions % Assumption: Task-relevant components in the devise a selective L, loss.
based on visual information. image are easily identifiable using available prior % ldentify pixels where predicted labels may be wrong but
> e.g., DeepMind Control suite (DMC) knowledge. the world model decoder is correct, ignoring L, loss for
< Add distractions for a more < Use the prior knowledge of pre-trained such pixels to avoid providing wrong signals.
challenging and realistic setup. segmentation foundation models. pixel, sy =pixel y\pixel.,,

“ SD: Reconstruct only task-relevant components.
< SD®T: Uses ground-truth masks for task-relevant
components when available (e.g., in simulation).

o SDAPPT%: UUses a segmentation model fine-tuned

with as few as one annotated example. Ry A ey —— oo,
2_ MOdel-Based RL observation with decoder output from seg. foundation model
distractions (Contains false negatives)

» Cooperation between a world model “
and behavior learning.
< Promising with great sample

Q;#Empirically less pronéﬁB Naive L2 loss on (c)
to false negatives J is undesirable.
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We should
nullify the loss
for target pixels
that are likely

incorrectly
masked out.
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“ Often struggles in distracting
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% Our method, SD, fixes this with
: . . FriviSteps €9 Method Real-world Return
segmentatlon-gmded reconstruction. --- Dreamer* —— SDCT —— DreamerPro — TIA DREAMER* 1722 + 14.4
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for sim-to-real transfer by reducing variance during training.



